

Nazareth Academy High School

Calculus Summer Assignment
Ms. Souyack
jsouyack@nazarethacademyhs.org
Name \qquad
Calculus is an advanced-level mathematics course which utilizes certain aspects of previous math courses that you have taken. In order to ensure your success in the course, there is a mandatory summer assignment packet.

Most topics should be a review. You should not only be familiar with the topics but should know them well enough to be tested on them.

Study your unit circle! You need to know this well for Calculus.
On the first day of class, you should have your completed summer assignment with you. The assignment will be graded as your first test grade for the year. No work, no credit. Please circle or box your final answers. If the assignment is late, you will lose 20% of your grade each day until it is handed in.

If you have any questions during the summer, please email me.
This is a very challenging course. You should be prepared to work to the best of your ability. Success in the course will be a result of your desire to work hard, both in class and independently.

Have a great summer!
Ms. Souyack

Question

1. Solve for $\mathrm{x}: \mathrm{x}^{2}+5 \mathrm{x}<0$
2. Solve for $\mathrm{x}:-3 \leq 2-5 \mathrm{x} \leq 12$
3. Solve for $\mathrm{x}:|2 x-1| \geq 3$
4. Draw a number line graph of x for the solution to \#3.
5. Solve by completing the square:

$$
x^{2}-8 x+1=0
$$

6. Solve using the quadratic formula:

$$
2 x^{2}+5 x-12=0
$$

Hint
Factor and test intervals

Dividing by negatives

Determine direction and if graph includes endpoints

Move constant to other side, add new term to both sides

Question
7. Write as one fraction:

$$
\frac{4 x}{x-1}-\frac{x}{x+2}
$$

8. Factor:

$$
12 x^{2}(4 x+5)^{7}(2 x+1)+24 x(4 x+5)^{8}
$$

Given the points A $(4,-5), \mathrm{B}(6,-2), \mathrm{C}(3,0)$
9. Find the distance AB
10. Name the midpoint of $\overline{A B}$
11. Is $\triangle A B C$ scalene, isosceles, or equilateral? Explain.

Hint
Find common denominator

Use GCF

Use distance formula

Use the midpoint formula

Find length of each side

Question
12. Write the equation in slope-intercept form for the line perpendicular to line AC through A.
13. Find the x - and y -intercepts:

$$
y=\frac{x-1}{x+3}
$$

14. What is the range of the function in \#13?
15. What type of symmetry does the function $y=\frac{x^{2}}{x^{2}-4}$
16. Find all points of intersection of:

$$
\begin{aligned}
& y=-x^{2}+4 x \\
& y=x^{2}
\end{aligned}
$$

Hint
Perpendicular slopes are negative reciprocals

Set one variable at a time equal to zero.

Set of all possible y-values

If $f(-x)=f(x)$, then y-axis symmetry.

If $f(-x)=-f(x)$, then origin symmetry.

Use substitution or graphing calculator.

For Problems \# 17-19

According to company records, in 1980 the company earned $\$ 3.2$ million in earnings and in 1985 earned $\$ 4.7$ million. Assume a linear model for earnings in millions of dollars, E, versus time in years, t . Let 1980 be year $\mathrm{t}=0$.
17. Write an equation for E as a function of t .

Find slope and y-intercept
18. Estimate the company's gross profits in 2000.

Use equation from \#17
19. What information does the slope convey to the company?

Look at what the units would be

For $f(x)= \begin{cases}|x-7|, & x \leq-2 \\ 2 x-3, & x>-2\end{cases}$
20. Find $f(-5)$

Determine which rule
21. Find $f(4)$

Determine which rule

For the function $\quad f(x)=\frac{3 x-5}{x^{2}-3 x-4}$
22. Find the domain

Where denominator is not 0
23. Find the roots (zeroes)

Set $f(x)=0$

Given the functions $f(x)=x^{2}+4$ and $g(x)=\sqrt{x-5}$
24. Find $f(g(x))$

Substitute
25. Find the inverse of $g(x)$

Switch x and $\mathrm{g}(\mathrm{x})$, then solve
26. $\log _{5} 625=$ \qquad Exponent-Log Relationship
27. $\ln 4.56=$ \qquad Use Calculator, Round to 3 decimal places.
28. Solve this equation:
$2 \log (x+3)-\log (5-x)=\log 1$
29. $5 \log _{2} 16-0.5 \log _{2} 64=$ \qquad
Properties of log, make $1 \log$ Exponent-Log Relationship

Find x in each right triangle shown below: Round answers to 2 decimal places.
30.

31.

32. Name these values. Note all angles must be in radians. Use the unit circle! If it is not on the unit circle then you may use a calculator to round to 3 decimal places.
a. $\sin \frac{\pi}{6}=$ \qquad b. $\tan \frac{2 \pi}{3}=$ \qquad c. $\sec \pi=$ \qquad
d. $\cot \frac{5 \pi}{3}=$ \qquad
e. $\cos (-1.16)=$ \qquad
f. $\csc (-4)=$ \qquad
g. $\arcsin \frac{\sqrt{2}}{2}=$ \qquad h. $\arctan (12)=$ \qquad i. $\operatorname{arcsec}(-2)=$ \qquad
33. Solve for $\mathrm{x}, 0 \leq x \leq 2 \pi$:

Let $\mathrm{A}=\sin \mathrm{x}$, then factor

$$
\sin ^{2} x-2 \sin x=3
$$

34. Prove the following identity

Use Pythagorean or Trig Id.

